Artificial Intelligence in Industry with Daniel Faggella

Some businesses are going to require a sea change in the way that their computation works and the kinds of computing power that they're leveraging to do what they need to do with artificial intelligence. Others might not need an upgrade in hardware in the near term to do what they want to do with AI.

What's the difference? That's the question that we decided to ask today of Per Nyberg, Vice President of Market Development, Artificial Intelligence at Cray. Cray is known for the Cray-1 supercomputer, built back in 1975. Cray continues to work on hardware and has an entire division now dedicated to artificial intelligence hardware. This week on AI in Industry, we speak to Nyberg about which kinds of business problems require an upgrade in hardware and which don't.

Direct download: AI_in_Industry-Per_Nyberg-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 6:41am PST

We speak this week with Aneesh Reddy, cofounder and CEO of Capillary Technologies. Capillary is a rather large firm based in Singapore. Aneesh is in Bangalore himself. The firm focuses on machine vision applications in the retail environment.

How do we instrument a physical retail space so that, with cameras, we can pick up on the same kind of metrics that eCommerce stores can? Retail stores, as Reddy talks about in this episode, have to focus on the data that they get from the checkout counter, such as what kind of purchases were made, and potentially some kind of data about how many times the front door was opened or closed. That doesn’t really lay out that much detail about who came in, what percent of them converted, and what the average cart value was for different people.

A lot of that is completely greyed out when looking at the numbers that are accessible to brick and mortar retailers. But some of that is changing. Reddy talks about what’s possible now with machine vision in retail, and what it opens up in terms of possibility spaces for understanding customers better in a physical environment. More importantly, Aneesh paints a bit of a future vision of where he believes retail is going to be when not just computer vision is included, but when audio and other kinds of sensor information are included.

Direct download: Copy_of_AI_in_Industry-Aneesh_Reddy-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 9:14am PST

In this episode of AI In Industry, we interview Nick Possley, the CTO of a company called AllyO, based in the San Francisco Bay area. We speak with Nick about where artificial intelligence and machine learning are playing a role in recruiting today and how picking the right candidates from a pool is in some way being informed by artificial intelligence. Whether a business leader is hiring dozens and dozens of people or whether they ’re just interested in understanding how AI can engage with individuals on more of a one-to-one basis, this should be a fruitful episode. In addition, the fundamentals of what we discuss in this episode, in terms of taking in data from profiles and responding and engaging with applicants, could be applied to all sorts of cases, such as customer service and marketing.

Read the full interview article here: https://www.techemergence.com/how-to-use-ai-to-hire-and-recruit-talent

Direct download: Copy_of_AI_in_Industry-Nick_Possley-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 8:25am PST

What makes a chatbot or a conversational interface actually work? What kind of work does one need to do to get a chatbot to do what one wants it to do? These are pivotal questions and questions that for most business leaders are still somewhat mysterious, but that’s exactly what we’re aiming to answer on this episode of the AI in Industry Podcast.

This week we speak with Madhu Mathihalli, CTO and co-founder of Passage AI. We speak specifically about what kinds of tasks conversational interfaces are best at, what kinds of word tracks, what kind of questions and answer are they suited for and which are a bit beyond their grasp right now. In addition, we speak about what it takes to train these machines. In other words, how do we define the particular word tracks that we want to be able to automate and determine which of them might be lower hanging fruit for applying a chatbot or which of them might not?

Read or listen to the full podcast here: https://www.techemergence.com/how-to-get-a-chatbot-to-do-what-one-wants-in-business/

Direct download: AI_in_Industry-Madhusudan_Mathihalli-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 2:56pm PST

1