Artificial Intelligence in Industry with Dan Faggella
Neural Nets Just One Strand in a Braided Approach to Building Strong AI

TechEmergence has had a number of past guests who have talked about neural networks and machine learning, but Dr. Pieter Mosterman speaks in-depth about the pendulum swing in this approach to AI from the 1960s to today. What we call neural networks as a general approach to developing AI has come in and out of favor two or three times in the last 50+ years. In this episode, Dr. Pieter Mosterman speaks about the shift in this approach and why neural networks have gone in and out of favor, as well as where the pendulum may take us in the not-too-distant future.

.

Direct download: PieterMosterman.mp3
Category:Big Data -- posted at: 3:00am PST

Open-Minded Conversation May Be Our Best Bet for Survival in the 21st Century

Few astrophysicists are as decorated as Martin Rees, Baron Rees of Ludlow, who was a primary contributor to the big-bang theory and named to the honorary position of UK's astronomer royal in 1995. His work has explored the intersections of science and philosophy,  as well as human beings’ contextual place in the universe. In his book "Our Final Century", published in 2003, Rees warned about the dangers of uncontrolled scientific advance, and argued that human beings have a 50 percent chance of surviving past the year 2100 as a direct result. In this episode, I asked him why he considers AI to be among one of the foremost existential risks that society should consider, as well as his thoughts around how we might best regulate AI and other emerging technologies in the nearer term.

Direct download: Martin_Rees.mp3
Category:Artificial Intelligence -- posted at: 9:12pm PST

Putting the Art in Artificial Intelligence with Creative Computation

When we think about AI, we often think about optimizing some particular task. In most circumstances through computation there is an optimal chess move, or an optimal way to determine pattern in data, or solve a math problem, or route info through servers. Most of us are aware of these uses, but what about creative tasks? Can these also be optimized? If we want to give a computer information and tell it to create powerpoint slides, is there an optimal way to create such slides? Dr. Philippe Pasquier’s computational research is focused on artificial creativity. In this episode, we talk about how to define a very new field, train machines in this area, and also discuss trends and developments that might permit such technology to thrive in the next 10 years.

Direct download: Philippe_Pasquier_1.mp3
Category:Artificial Intelligence -- posted at: 4:00am PST

How Machine Learning Builds Meaning from Our Chats, Tweets, and Likes

There’s a small lab in Pennsylvania that may know your gender, age, and understands facets about your personality, whether you’re introverted or extroverted, for example…and it's using machine learning to help make conclusions from social media information. For those who are raising an eyebrow, know that they’re not tapping into people’s accounts without permission. The described study is happening at University of Pennsylvania and is led in part by Dr. Lyle Ungar. In this episode, we talk about the focus of his work - on finding patterns between users and their language on social media content, and building an understanding for how this information might help individuals and communities in the future.

Direct download: Lyle-Ungar_1.mp3
Category:machine learning -- posted at: 6:00am PST

1