Artificial Intelligence in Industry with Dan Faggella

As it turns out, survival of the fittest applies as much to algorithms as it does to amoebas, at least when we're talking about genetic algorithms. We recently interviewed Dr. Jay Perrret, CTO of Aria Networks, a company that uses genetic algorithm-based technology for solving some of industry's toughest problems, from optimization of business networks to pinpointing genetic patterns correlated with specific diseases. Dr. Perrett has been working for years in this domain, testing algorithms that use variations of parameters in order to gradually arrive at a best result, when there's no simple way to program a solution. In this episode, Dr. Perrett discusses how genetic algorithms (GA) work and ways that they can be tested and applied in a business context. He provides two very useful case studies, including a recent example with Facebook that involved planning out an optimal (and massive) data network.

 

Direct download: TEP-Jay_Perrett-Mixdown.mp3
Category:general -- posted at: 7:37pm PDT

Getting beyond the marketing and jargon on the homepage of AI companies and figuring out what's actually happening, what results are being driven in business, is part of our job at TechEmergence. Shaking those answers out of founders is not always easy, but we didn't have to do much shaking with Yohai Sabag, chief data scientist for Optimove, a marketing AI and automation company in Israel. In this episode, he speaks about what humans are needed for in the optimization process, and what facets can be automated or distributed to a machine. Sabag gives an excellent walk-through of how marketers can use the "human-machine feedback loop" to optimize individual campaigns at scale.

 

Direct download: TEP-Yohai_Sabag-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 5:00pm PDT

You might be aware that some of the articles online about sports or financial performance of companies are article written by machines; this machine learning-based technology is the burgeoning field of natural language generation (NLG), which aims to create written content as humans would—in context— but at greater speed and scale. Yseop is one such enterprise software company, whose product suite turns data into written insight, explanations, and narrative. In this episode we interview Yseop's Vice President Matthieu Rauscher, who talks about the fundamentals of natural language generation in business, and what conditions need to be in place in order to drive key objectives. Rauscher also addresses the difference between discover-oriented machine learning (ML) and production-level ML, and why different industries might be drawn to one over the other.

Direct download: TEP-Matthieu_Rauscher-Mixdown.mp3
Category:machine learning -- posted at: 8:00pm PDT

There is in fact a dark side to AI, although we’re certainly not at the point where we need to fear terminators, but it’s certainly been leveraged toward malicious aims in a business context. In data security, tremendous venture dollars are going into preventing fraud and theft, but this same brand of technology is also being use by the “bad guys” to try and steal that information and break into those systems. In this episode, I speak with Justin Fier, director of cyber intelligence at Dark Trace, who speaks about the malicious uses of AI and how companies like Dark Trace have been forced to fight these “AI assailants”.

Direct download: TEP-Justin_Fier-Mixdown.mp3
Category:Cyber Security -- posted at: 5:00pm PDT

Most of our recent investor interviews have been Bay area investors, like Accenture and Canvas, and we don't usually get to speak with investors overseas, particularly in Asia. This week, however, we interviewed Tak Lo, a partner with Zeroth.ai, an accelerator program and cohort investing firm based in Hong Kong and focused on startup artificial intelligence (AI) and machine learning (ML) companies. Lo speaks about when he saw AI take off in China and the differences in that rise compared to the U.S. He also gives valuable insight on consumer differences in how the two populations interact with technology, and how these differences in the Asian market drive different business opportunities in China than in the U.S.

Direct download: TEP-Tak_Lo-Mixdown.mp3
Category:Startup Funding -- posted at: 5:51pm PDT

If you're going to apply machine learning (ML) in a business context, you need a lot of data, and algorithms across the board perform better with more recent, rich, and relevant data. Today, there are companies whose entire business models are predicated on helping others make sense of and use of this type of information. In this episode, we speak with the CTO and Co-Founder of one such company—Palo Alto-based Cloudera. CTO Amr Awadallah, PhD, speaks with us this week about where he sees "data lakes" (or "data hubs", Cloudera's preferred term) and warehouses play an important role in ML applications in business. Based on his experiences helping a variety of companies in many countries set up data lakes, Amwadallah is able to distill and communicate these uses in three broad categories that apply across industries as companies look to solve tougher problems and ask more complex questions using unstructured data.

Direct download: TEP-Amr_Awadallah-Mixdown.mp3
Category:machine learning -- posted at: 7:55am PDT

One facet of business that nearly any industry has in common is the need to stay on top of news in their respective market, including competitor strategies or understanding changes in news related to the field. Media monitoring is a domain that machine learning (ML) is well suited for, with it's ability to coax out headlines, contextual information, and financial data from the seemingly endless stream of social, blog, and other information on the web today. Signal is a company that uses ML specifically for these purposes. In this episode, we speak with Signal Media's Chief Data Scientist and Co-founder Dr. Miguel Martinez, who dives into real business use cases illustrating the use of machine learning for media monitoring across industries.

 

Direct download: TEP-Miguel_Alvarez-Mixdown_v2.mp3
Category:machine learning -- posted at: 6:30pm PDT

What does it mean to tune an algorithm, how does it matter in a business context, and what are the approaches being developed today when it comes to tuning algorithms? This week's guest helps us answer these questions and more. CEO and Co-Founder Scott Clark of SigOpt takes time to explain the dynamics of tuning, goes into some of the cutting-edge methods for getting tuning done, and shares advice on how businesses using machine learning algorithms can continue to refine and adjust their parameters in order to glean greater results.

Direct download: TEP-Scott_Clark-Mixdown2.mp3
Category:machine learning -- posted at: 5:00pm PDT

In this episode, recorded live at Canvas Ventures in Portola Valley, I speak with Ben Narasin, a partner with Canvas and an avid venture investor in AI and ML companies, some of which we've interviewed (Crowdflower and Mulesoft), along with many others that we haven't (like Siri). Ben doesn't look for AI to invest in; instead, he looks for companies to invest in, a subtle but important difference in a business world increasingly caught up in the explosion of AI and ML technologies.

From investments in Nuance to more recent one such as Houzz, Narasin has solid ideas as to what makes an investment interesting when AI is involved, what might actually add value to a model with AI, and what's wholly irrelevant when it comes to overall business model. Besides making important distinctions on where investments can make a return and how to raise money for your AI startup, this interview is also chock full of great analogies (give me golden dragons all day long—anyone?)

Direct download: TEP-Ben_Narasin-Mixdown.mp3
Category:Startup Funding -- posted at: 5:00pm PDT

There’s been lot of hype around AI and ML in business over the past five years. Even among investors exist a lot of misconceptions about using ML in a business context, and how to get up to speed on and grasp and understand leveraging related technologies in industry. Recently, I talked with Benjamin Levy of BootstrapLabs in San Francisco, who I met through an investment banking friend in Boston.

BootstrapLabs invests in Bay area companies, and Levy also travels around the world speaking about investing in AI companies and raising funds for new ventures. In this episode, Levy gives his perspective on what investors and executives get wrong about ML and and AI, and discusses how they can get up to speed on the applications for these technologies and leverage them and related expertise to really make a difference (i.e. increased ROI) in their businesses.

Direct download: TEP-Ben_Levy-Mixdown.mp3
Category:Startup Funding -- posted at: 6:52am PDT