Artificial Intelligence in Industry with Dan Faggella (Artificial Intelligence)

Episode Summary: Prominent technology companies like Google and Amazon lead the way in the B2C world, having access to streams of searches, clicks, and online purchases. They have access to large volumes of consumer data pointss numbering in the billions that can be used to train machine learning algorithms.

B2B companies operate under a different model: "propensity to buy," as it's called. A typical B2B company might at most make a couple hundred sales per year, and many B2B companies make only dozens. In other words, every sale matters.

In this episode of the AI in Industry podcast, we interview Kiran Rama, Director of Data Sciences Center of Excellence at VMWare, about purchasing external data and to leveraging internal data. Rama also talks about using data to determine how likely certain leads are to turn into high-value customers. In addition, he discusses with us the "propensity to buy."

We hope that this interview can help business leaders determine if and how AI can help their organizations identify which leads could yield the highest ROI and which customers are the most primed for reselling.

Direct download: AI_in_Industry-Kiran_Rama-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 9:52am PDT

For business leaders who are thinking about integrating AI into their company or who are just in the very beginning of that journey, this may be a useful episode of the podcast.

Many times, people think that finding the right talent is the biggest challenge when it comes to integrating AI into the enterprise. Much of our own research and  conversations with machine learning vendors and the consultants trying to sell AI into the enterprise actually think there's another, bigger problem: combing the expertise of subject matter experts and that of data scientists to leverage information for future initiatives in business.

This week, we interview Grant Wernick, CEO of Insight Engines in San Francisco. We speak with Grant about the initial challenges of organizing data and setting up a data infrastructure a business can use to leverage AI. We also talk about using data in leveraging normal workflows so that non-technical personnel can use it to drive better product innovation to help the company.

Direct download: AI_in_Industry-Grant_Wernick-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 1:55pm PDT

One of most fun parts about doing our geolocation pieces at TechEmeergence is that we are able to interview so many people within a given country or city. Recently we did a huge piece on AI in India. We got to interview folks from the government and the bigger existing businesses, as well as a handful of people at the unicorns in Bangalore.

One of those companies is Fractal Analytics. Fractal Analytics works in a number of spaces. One of them, consumer packaged goods, is an area on which we haven’t done much coverage. Many of our readers are in the retail space, but CPG has some pretty curious AI use cases.

This week, we interview Prashant Joshi, Head of AI and Machine Learning at Fractal Analytics, about the different applications of machine learning in the CPG sector: doing chemical tests or finding new buyer segments within existing groups of consumers to determine who is buying from a company and who is buying from competitors.

Hopefully, for those in retail, this interview will not only highlight some of the interesting use cases of AI in the CPG world but also provide some ideas about winning market share from what some of the bigger CPG firms are doing with Fractal Analytics.

Direct download: AI_in_Industry-Prashant_Joshi-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 6:27pm PDT

In this episode of the AI in Industry podcast, we interview Grant Ingersoll at Lucidworks, about enterprise search. Ingersoll talks about how companies have massive amounts of siloed data, making it difficult to find within enterprise systems.

We hope businesses might take away from this interview what is required and what is involved in building search applications to make corporate data more accessible and structured. Ingersoll will also discuss how data strategies are going to evolve and how scientists and data experts might come together to build an enterprise search application.

Direct download: AI_in_Industry-Grant_Ingersoll-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 8:12am PDT

We receive a lot of interest from business leaders in the domain of data enrichment, and we've executed on a few campaigns for these businesses. At the same time, our audience seems particularly interested in the collection of data to train a bespoke machine learning algorithm for business, asking questions related to how to get started on data collection and from where that data could come.

This week on AI in Industry, we seek to answer those questions. We are joined by Daniela Braga, CEO and founder of DefinedCrowd, a data enrichment and crowdsourcing firm, who discusses with us how a business might determine what kind of data it might need for its AI initiative.

We hope the insights garnered from this interview will help business leaders get a better idea of how they could go about starting an AI initiative and seeing it through from data collection or enhancement to solving its business problem.

Direct download: AI_in_Industry-Daniela_Braga-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 10:14am PDT

There’s more to successful AI adoption than picking the right technology. Business leaders should be aware of the technical requirements of the initiative they’re undertaking, and few of those requirements are as important as data.

For this episode, we spoke with Mark Brayan, CEO of Appen, a firm that offers crowdsourced training data for machine learning applications. We discuss how developing a sound data strategy is essential for using AI to solve business problems. Brayan also helped us detail how and when a business can make use of certain data collection and enrichment methods depending on their business goals.

Direct download: AI_in_Industry-Mark_Brayan-Mixdown_v2.mp3
Category:Artificial Intelligence -- posted at: 12:55pm PDT

Over the last year, we've covered a lot of marketing applications. Many people know of our deep marketing research we've done on the landscape of machine learning in marketing applications and which industries will be affected first. But marketing doesn't tell the whole story when it comes to B2B sales. At some point, we need to take these clicks and turn them into appointments, for example. In this episode of AI in Industry, we are joined by Vitaly Gordon, VP of Data Science and Engineering at Einstein, Salesforce’s customer relationship management application driven by artificial intelligence.

We speak with Vitaly about where AI is serving a role in sales enablement today and how the CRM and sales tool ecosystem might be different in the near-term future; how will salespeople be able to leverage AI to make themselves more productive? Vitaly paints an interesting picture of where he sees the low hanging fruit and the unique challenges with sales data and B2B data that are quite different from the challenges those in the B2C world might deal with.

Direct download: AI_in_Industry-Vitaly_Gordon-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 9:02am PDT

This week on AI in Industry, we speak with Amir Saffari, Senior Vice President of AI at BenevolentAI, a London-based pharmaceutical company that uses machine learning to find new uses for existing drugs and new treatments for diseases.

In speaking with him, we aim to learn two things:

  • How will machine learning play a role in the phases of drug discovery, from generating hypotheses to clinical trials?
  • In the future, what are the roles of man and machine in drug discovery? What processes will machines automate and potentially do better than humans in this field?

We hope the insights in this episode provide business leaders in the pharma industry with an understanding of the current state of AI in their space and where it might play a role in their industry in the next two to three years.

See the full interview article here: www.techemergence.com/future-drug-discovery-ai-role-man-machine

Direct download: AI_in_Industry-Amir_Saffari-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 7:17am PDT

We usually discuss the impact of artificial intelligence on a business's bottom line, but governments and NGOs are also considering AI as a mechanism for improving society.

This week on the AI in Industry podcast, Anandan Padmanabhan, CEO of the Wadhwani Institute for Artificial Intelligence in India, speaks to us about where and how the public sector should consider leveraging AI.

Padmanabhan discusses the challenges that the Indian government faces in providing education and healthcare to its citizens. Although AI might help overcome these challenges, those who need these services most may not have access to the technologies necessary to work with it.

See the full interview article here: www.techemergence.com/ai-government-ngo-social-good-initiatives-interview-wadhwani-institute

Direct download: AI_in_Industry-Anadan_Padmanabhan-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 9:44am PDT

AI has made it easier to understand text as a medium in a deeper, more efficient way and at scale. With video, the situation is quite different. Searching for content within videos is more challenging because video is not just voice and sound, it is also a collection of moving and still images on screen. How could AI work to overcome that challenge?

In this episode of the AI in Industry podcast, we interview Manish Gupta, CEO and co-founder of VideoKen, about the future of video search as machine learning is increasingly integrated into the process. Dr. Gupta talks about how video is becoming more searchable and discusses his own forecasts about what that will look like in the future. He also predicts what machine learning will allow Youtube to do as people continue to search for more specific video content.

Our Content Lead, Raghav Bharadwaj, joins us for this interview.

See the full video article here: www.techemergence.com/machine-learning-video-search-video-education-how-it-works/

Direct download: AI_in_Industry-Manish_Gupta-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 8:38am PDT

This week on AI in Industry, we are talking about the ethical consequences of AI in business. If a system were to train itself to act in unethical or legally reprehensible ways, it could take actions such as filtering or making decisions about people in regards to race or gender.

When machine learning is integrated into technology products, could a misbehaving system put the company at financial and legal risk?

Our guest this week, Otto Berkes, Chief Technology Officer of New York-based CA Technologies, speaks to us about realistic changes in the technology planning and testing process that leaders need to consider. We discussed how businesses could integrate machine learning into the products and services, while still protecting themselves from potential legal downsides.

See the full interview article featuring Otto Berkes live at: https://www.techemergence.com/?p=13752&preview=true

Direct download: AI_in_Industry-Otto_Berkes-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 10:05am PDT

When we think of recommendation engines, we might think of Amazon or Netflix, but while consumer goods and entertainment might be the most prominent domains for recommendation engines, there are others. This week, we speak with Madhu Gopinathan of MakeMyTrip.com, one of the few Indian unicorn companies, about recommendation engines for travel companies.

According to Madhu, MakeMyTrip’s recommendation engine has to figure out the best hotels for customer given their destination, but recommending hotels to first-time users and those who don’t frequent the site can prove challenging. How does a travel company’s AI-based recommendation engine start the process of making well-informed recommendations?

Madhu talks to us about how a recommendation engine might match people immediately with their preferred product or service when the on-site data does not exist to inform the AI-driven recommendations.

See the full interview article here: www.techemergence.com/recommendation-engines-actually-work-strategies-principles

Direct download: AI_in_Industry-Madhu_Gopinathan-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 9:35am PDT

Episode Summary: In this episode of the podcast, we interview AIG’s Chief Data Science Officer, Dr. Nishant Chandra, about natural language processing (NLP) for internal and team communication. Dr. Chandra talks about how NLP can help with sharing documents with specific team members whose roles warrant viewing those documents.

Instead of a broad memo that would go out across the company, a document could be transformed to a tailored message depending on the individual receiving it. For instance, a document could be presented in a digestible way to the executive team, but be distilled to contain fewer details for the technology team to make it relevant to them. How might NLP serve this summarization role for internal communications in the next 5 years?

See the full interview article here: www.techemergence.com/nlp-text-summarization-team-communication

Direct download: AI_in_Industry-Nishant_Chandra-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 8:36am PDT

Companies with wells of data at their disposal may find themselves asking how they can use them in meaningful ways. Generally speaking, a clean set of data is the foundation for AI applications, but business owners may not know how exactly to organize their data in a way that allows them to best leverage AI. How exactly does a business transition from having data with the potential for usefulness to having data that’s going to allow for an accurate, helpful machine learning tool—one that can actually help solve business problems?

In this episode of the podcast, we speak with Bryon Jacob, Co-founder and Chief Technology Officer at data.world, a company that offers products and services that help enterprises manage their data. In our conversation, Bryon walks us through the common errors companies make when creating and organizing data sets, and how these companies can transition to a more organized and meaningful data management system.

The details in this interview should provide business leaders with a better understanding of some of the processes involved in getting started with AI initiatives, and how to hire data science-related roles into a company.

See the full interview article with Bryon Jacob live at: 

https://www.techemergence.com/how-existing-bus…ta-assets-for-ai/

Direct download: AI_in_Industry-Bryon_Jacobs-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 4:51pm PDT

Episode summary: In this episode of Ai in industry, we speak with Manoj Saxena, the Executive Chairman of CognitiveScale, about how AI and automation are being applied to white-collar processes in the healthcare sector.

In simple business language, Manoj summarizes key healthcare applications such as invoicing handling, bad debt reduction, claims combat, and the patient experience, and explains how AI and automation can make these processes more efficient to improve the patient experience in healthcare organizations.

Interested readers can listen to the full interview with Manoj here: 

https://www.techemergence.com/white-collar-automation-in-healthcare/

 

Direct download: AI_in_Industry-Manoj_Saxena-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 9:00pm PDT

Episode Summary: Natural language processing (NLP) has become popular in the past two years as more businesses processes implement this technology in different niches. In inviting our guest today, we want to know specifically which industries, businesses or processes NLP could be leveraged to learn from activity logs.

For instance, we aim to understand how car companies can extract insights from the incident reports they receive from individual users or dealerships, whether it is a report related to manufacturing, service or weather.

In the same manner, how can insights be gleaned from the banking or insurance industries based on activity logs? We speak with the University of Texas’s Dr. Bruce Porter to discover the current and future use-cases of NLP in customer feedback.

 Interested readers can listen to the full interview with Bruce here:

https://www.techemergence.com/using-nlp-customer-feedback-automotive-banking

 

Direct download: AI_in_Industry-_Bruce_Porter-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 9:50am PDT

Episode summary: This week on AI in Industry, we speak to Rana el Kaliouby, Co-founder and CEO of Affectiva about how machine vision can be applied to detecting human emotion - and the business value of emotionally aware machines.

Enterprises leveraging cameras today to gain an understanding of customer engagement and emotions will find Rana’s thoughts quite engaging, particularly her predictions about the future of marketing and automotive.

We’ve had guests on our podcast say that the cameras of the future will most likely be set up for their outputs to be interpreted by AI, rather than by humans. Increasingly machine vision technology is being used in sectors like automotive, security, marketing, and heavy industry - machines making sense of data and relaying information to people. Emotional intelligence is an inevitable next step in our symbiotic relationship with machines, an in this interview we explore the trend in depth.

Interested readers can listen to the full interview with Rana here: https://www.techemergence.com/can-businesses-use-emotional-intelligence

 

Direct download: AI_in_Industry-Rana_el_Kaliouby-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 12:00pm PDT

A myriad of customer service channels exist today, such as social media, email, chat services, call centers, and voice mail. There are so many ways that a customer can interact with a business and it is important to take them all into account.

Customers or prospects who interact via chat may represent just one segment of the audience, while the people that engage via the call center represent another segment of the audience. The same might be said of social media channels like Twitter and Facebook.

Each channel may offer a unique perspective from customers – and may provide unique value for business leaders eager to improve their customer experience. Understanding and addressing all channels of unstructured text feedback is a major focus for natural language processing applications in business – and it’s a major focus for Luminoso.

Luminoso founder Catherine Havasi received her Master’s degree in natural language processing from MIT in 2004, and went on to graduate with a PhD in computer science from Brandeis before returning to MIT as a Research Scientist and Research Affiliate. She founded Luminoso in 2011.

In this article, we ask Catherine about the use cases of NLP for understanding customer voice – and the circumstances where this technology can be most valuable for companies.

Read the full article:

techemergence.com/improving-customer-experience-with-ai-gaining-quantifiable-insight-at-scale

Direct download: AI_in_Industry-Catherine_Havasi-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 7:55pm PDT

Episode summary: In this episode of AI in Industry, we speak with Khalifeh Al Jadda, Lead Data Scientist at CareerBuilder, about the applications of machine learning in improving a user’s search experience.

Khalifeh also talks about what the future of search might look like and how AI will continue to make the search experience more intuitive (for search engines, platforms, eCommerce stores, and more).

Business leaders listening in will get a sneak peak into the future of online search - and an understanding of how and where improvements in search features could impact their business.

Interested readers can listen to the full interview with Khalifeh here:

https://www.techemergence.com/better-than-elasticsearch-machine-learning-search/

Direct download: AI_in_Industry-Khalifeh_Al_Jadda-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 1:48am PDT

Episode summary: In this episode of AI in Industry, we speak with Andy Terrel, the Chief Data Scientist at REX - Real Estate Exchange Inc., about how AI is being used in the real estate sector today.

Looking ahead ten years into the future, Andy paints a picture of the areas where he believes AI will change the real estate business. Andy explores how marketing in real estate might change in the future with chatbots and conversational interfaces in real estate which are high value per ticket interactions - a process that will likely vary greatly from the chatbot applications we see for smaller B2C purchases (in the fashion sector, eCommerce, etc).

Interested readers can listen to the full interview with Andy here:

https://www.techemergence.com/ai-use-cases-future-real-estate/

Direct download: AI_in_Industry-Andy_Terrel-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 5:14am PDT

Episode summary: Here on the AI in Industry podcast, we’ve heard AI experts explain how high-performance computing (HPC) has enabled everything from machine vision to fraud detection. In this week’s episode, we speak with Paul Martino, Managing Partner at Bullpen Capital, about which industries and AI applications will require high-performance computing most.

Paul also adds some useful tips for business leaders on how to prepare for the coming AI-related developments in hardware and software.

Interested readers can listen to our full interview with Paul here: https://www.techemergence.com/?p=12779&preview=true

 

 

Direct download: AI_in_Industry-Paul_Martino-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 7:40am PDT

Episode summary: In this episode of AI in Industry, we speak with Dr. Sanmay Das from the Washington University in St. Louis about risk prediction and management in industries like banking, insurance and finance.

Sanmay explores how are banks and other financial institutions are improving risk and fraud prevention measures with machine learning. In addition, he explores the ramifications of improved fraud detection in the coming 5 years ahead.

Interested readers can listen to the full interview with Sanmay here: https://www.techemergence.com/machine-learning-for-credit-risk/

Direct download: AI_in_Industry-Sanmay_Das-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 2:30am PDT

Episode summary: In the last two or three years we at TechEmergence have witnessed a definite uptick in AI applications like predictive maintenance and heavy industry. Many exciting business intelligence and sensor data applications are making their way into “stodgy” industries like transportation, oil and gas, and telecom - where machine vision has countless applications.

We had caught up with Massimiliano Versace, CEO of Neurala over 4 years ago in an interview about the ethical implications of AI. In this week’s episode of AI in Industry, Max speaks with us about how machine vision and drones can be used together to automate the process of facilities and heavy asset upkeep. Max walks us through potential applications in telecom and rail transportation and explains where he thinks machine vision has the strongest potential to impact the bottom line.

Business leaders who manage heavy assets or physical infrastructure should find this interview insightful, as Max explains both current and near-future applications for machine vision for maintenance and upkeep.

Interested readers can listen to the full interview with Max here: https://www.techemergence.com/applications-of-machine-vision-in-heavy-industry/

Direct download: AI_in_Industry-Massimilano_Versace-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 6:49am PDT

Episode summary:  In this episode of AI in Industry we speak with Abhi Yadav, the CEO of ZyloTech, a Boston-based customer analytics platform for omni-channel marketing operations. Abhi talks about what's possible now with AI for marketing personalization, and what will be possible in the next 5 years.

Business leaders with an increasing focus on narrower customer targeting will be interested in Abhi’s insights on how technology allows for businesses to reach an “audience of one”.

Interested readers can listen to the full interview with Abhi here:

https://www.techemergence.com/artificial-intelligence-personalization-marketing-current-future-possibilities/

Direct download: AI_in_Industry-_Abhi_Yadav-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 3:18am PDT

Episode summary: In this week’s episode of AI in Industry we speak with DataRobot CEO Jeremy Achin about the future of AI applications for people without a data science background. We specifically discuss how future AI tools might bypass the complexity of machine learning programming and make intuitive interfaces that function more like today’s everyday software. Our business leader listeners will be interested in Jeremy’s predictions about how the UX for AI-related tools might become more simplified and code-less in the coming 5 years.

Interested readers can listen to the full interview with Jermy here: https://www.techemergence.com/will-artificial-intelligence-become-easier-use/

Direct download: AI_in_Industry-Jeremy_Achin-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 4:33am PDT

Episode summary: In this week’s episode of AI in Industry, we speak with Larry Lafferty, the President and CEO of Veloxiti. Larry has been building large AI projects for DARPA and other large private companies for the last 30 years.

In this interview, Larry explains three critical factors to applying artificial intelligence in the enterprise (with insights especially relevant for companies who aren’t very familiar with AI and data science).

AI vendors and business leaders should find the “how to” insights in this interview useful – particularly Larry’s details on organizing data and defining an AI-applicable business problem.

Interested readers can listen to the full interview with Larry here: https://www.techemergence.com/how-to-apply-ai-…h-larry-lafferty/

Direct download: AI_in_Industry-Larry_Lafferty-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 8:56am PDT

Episode summary: In the heavy industry sector, the cost of unpredicted repairs or machine failures can be very expensive. For example: A cargo train with an engine failure in will incur costs from it’s own repairs, from the transit required to reach the broken down engine, and with holding up other trains and cargo in the process.

Predictive maintenance has the potential to help businesses assess the condition of vehicles, equipment and parts in order to predict when maintenance should be performed. Using data collected by sensors on machines (including vibration, temperature, and more) heavy industry companies can potentially predict which machines or parts need imminent maintenance and which machines are least likely to breakdown.

In this week’s episode, we speak with Will McGinnis, Chief Scientist of Predikto, a predictive maintenance software provider based in Atlanta. Will speaks with us about predictive maintenance applied for the improvement railways and trains equipment, and how companies in the railway sector can use predictive maintenance to coax out patterns in maintenance schedules and heavy equipment data.

Interested readers can listen to the full interview with Will here:https://www.techemergence.com/will-mcginnis-predikto-predictive-maintenance-trains-mobile-heavy-industry

 

 

Direct download: AI_in_Industry-Will_McGinnis-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 12:00pm PDT

Episode summary: In this week’s episode of AI in Industry we speak with Rodney Brooks, Founder and CTO of Rethink Robotics, a collaborative robot manufacturers founded in Boston in 2008. Rodney explores robotic safety an regulations and he also paints a picture of what robots might be capable of in the next five years.

Executives in the logistics and manufacturing sectors considering adopting robots will find Rodney’s insights most valuable.  Rodney explores what applications will move into the realm of robotics and what application won't in the near future and delves into what business executives need to know about human robot collaboration before considering their adoption.

Interested readers can see the full interview with Rodney Brooks from Rethink Robotics here: https://www.techemergence.com/improving-robot-safety-capability-artificial-intelligence-rodney-brooks/

Direct download: AI_in_Industry-Rodney_Brooks-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 6:44am PDT

Episode summary: One of the key challenges that enterprises face in adopting artificial intelligence is finding skilled data science talent; ). Business leaders want to know when it's best to hire AI talent, to "upskill" existing workers, or simply to bring in AI consultants - and the answers aren't always obvious.

In this episode of AI in Industry we speak with Nikolaos Vasiloglou from MLTrain about how AI consulting and AI training events can be used to upgrade an existing team’s skills. Nikolaos also distinguishes the right and wrong circumstances to bring on AI consultants, and shares his tips on how training, upskilling, and consulting can level up an existing company’s AI capabilities.

Listeners can find out  how to set realistic goals for re-training existing teams for new AI skill sets. Lastly, we also explore how AI consultants can support developer and engineering teams to produce fruitful real-world AI applications (without developing unhealthy reliance on outside experts).

Interested readers can also listen to our previous episode of AI in Industry (here) where we look at overcoming the data and talent challenges of AI in life sciences

Interested readers can listen to the full interview with Nikolaos here:https://www.techemergence.com/whats-the-value-of-ai-events-and-consulting/

Direct download: AI_in_Industry-Nikolaos_Vasiloglou-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 12:00pm PDT

Episode Summary: Over the last couple of years there has been a definite but small shift from mobile as the primary interface focus for businesses to voice. With home assistant devices like the Amazon Echo and the Google Home becoming more commonplace, we aim to focus on how voice based AI applications are being used by businesses today and what this adoption will look like in the future.  

In this week’s episode of AI in Industry, we speak with Peter Cahill, the founder and CEO of Voysis, a voice AI platform that enables voice-based natural language instruction, search, and discovery. Peter explores areas where voice related AI applications will be used by businesses in B2B and B2C spaces today and what this might look like in five years.  

 Interested readers can see the full interview with Peter Cahill from Voysis here: https://www.techemergence.com/spoken-voice-ai-applications-smart-home-peter-cahill-voysis/

Direct download: AI_in_Industry-Peter_Cahill-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 12:15am PDT

In this week’s episode we focus on AI application in the customer service business function, - specifically in the context of call centers. We speak with Ali Azarbayejani, CTO of Cogito based in the Boston area, which works on coaching and providing feedback for call center agents in real time.

We aim to focus on what our readers and business executives can do today with AI in the context of call center applications, and how they can go about seeing measurable impacts over a predetermined period of time.

We speak with Ali about what is possible with analyzing voice in real-time today and what kind of ROI can businesses expect for this application. Lastly we touch-base on what factors will make AI inevitable for some companies in the next two to three years.

Interested readers can see the full interview with Ail here:

https://www.techemergence.com/what-industries-will-adopt-voice-related-ai-applications-first/

 

Direct download: AI_in_Industry-Ali_Azarbayejani-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 4:09am PDT

Episode summary: There are many challenges to bringing AI into an enterprise for example the lack of skilled AI talent, or issues around data organization. In this week's episode, we focus on AI adoption in the enterprise from an investor’s perspective.

We expect that founders looking to sell B2B enterprise AI-products and people in enterprises who are looking for the right qualities in an AI firm which would ease integration, would find this episode relatable. We speak with Rudina Seseri from Glasswing Ventures about what are the pain points for AI integration in the enterprise and at the other end of the spectrum, some factors that are aiding AI adoption.

Interested readers can see the full interview with Rudina here:

https://www.techemergence.com/reducing-friction-ai-adoption-enterprise-rudina-seseri/

 

Direct download: AI_in_Industry-Rudina_Seseri-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 6:30am PDT

Episode summary: In this week's interview on the AI in Industry podcast, we speak with Amir Konigsberg, the CEO of Twiggle, about the future of product search - and how eCommerce and retail brands can use natural language processing (NLP) to improve their user experience.

Amir explains some of the factors that make eCommerce product search challenging, and the artificial intelligence approaches that can improve it today and within the next five years.

Interested readers can learn more about present and future use-cases for artificial intelligence applications in retail in our full article on that topic.

You can listen to the full interview with Amir Konigsberg from Twiggle here:

https://www.techemergence.com/nlp-for-ecommerce-search-current-challenges-and-future-potential

Direct download: AI_in_Industry-Amir_Konigsberg-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 3:46am PDT

Episode Summary: Machine learning (ML) can be used to identify objects and pictures or help steer vehicles, but is not best suited for text-based AI applications says Robbie Allen, founder of Automated Insights.

In this episode of AI in Industry, we speak with Robbie about what is possible in generating text with AI and why rules based processes are a big part of natural language generation (NLG). We also explore which industries are likely to adopt such NLG techniques and in what ways can NLG help in business intelligence applications in the near future.

You can listen to the full interview with Robbie here:

 

Direct download: AI_in_Industry-Robbie_Allen-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 1:14am PDT

Episode summary: This week’s episode explores the current possibilities in applying natural language processing for legal contract review. We speak with Andrew Antos and Nischal Nadhamuni from Klaritylaw, a Boston-based startup focused on using natural language processing (NLP) based information extraction, from non-disclosure agreements (NDAs), in a live setting.

We delve into the current and future roles of AI and lawyers with respect to legal contracts. AI is currently being applied in applications like retroactive analysis and information identification in legal documents. According to Andrew and Nishchal, in the future we will see on-the-fly legal content creation from AI tools and NLP being applied to most commercial contracting. Although, one restraint that AI companies presently face in the legal domain is the lack of access to huge amounts of publicly available data.

You can listen to the full interview with Andrew and Nischal here:

Direct download: AI_in_Industry-_Klarity_Law-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 12:00am PDT

Episode summary: Most NLP applications we hear about involve marketing, customer service, and other customer-facing functions - but that there are NLP-related opportunities in other back-end functions as well.  

In this episode of AI in industry, we speak with Talla's Chief Data Scientist, Byron Galbraith, about how businesses can leverage chatbots or other NLP applications for improving document search for internal company communication. Byron explores what is currently possible using AI to improve search operations using contextual awareness. Byron also paints a vision of what AI-enabled "knowledge sharing" and "knowledge discovery" might look like in the future.

For the full article of this episode, visit: TechEmergence.com/artificial-intelligence-team-communication/

Direct download: AI_in_Industry-Byron_Gilbreath-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 12:00pm PDT

When we talk about natural language processing (NLP), applications like handling customer service or chatbots which can aid with questions, come to mind. Yet, in recent years, NLP platforms have been increasingly used in content marketing and content production applications.

In this episode of AI in industry, we talk to Tomás Ratia García-Oliveros, the co-founder and CEO founder of Frase.io, a Boston based startup which focuses on NLP problems around content marketing and content creation. Tomas explores how NLP platforms are now able to summarise resources on the web, perform contextual search and language understanding applications related to this domain.

See the full interview article with Tomás Ratia García-Oliveros live at:

www.techemergence.com/artificial-intelligence-content-marketing-content-creation

Direct download: AI_in_Industry-Tomas_Fraseio-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 12:00pm PDT

In this episode of AI in industry, we speak with Michael Johnson, the director of research and innovation for Interactions llc, in Boston MA. Michael explores the inbound (human to machine) and outbound (machine to human) applications of voice based natural language processing (NLP) and also talks about attaching a timeframe to how soon small and medium enterprises (SMEs) would have access to this technology in a financially sensible manner.

 Although NLP is often associated with chat or text interfaces, voice is important for applications in call centers, mobile phones, smart home devices, and more. In addition, Michael explains that voice involves unique challenges that text does not have to deal with - including background noise and accents, which need to be overcome to deliver a good user experience.

 See the full interview article with Michael Johnston live at:

www.techemergence.com/overcoming-challenges-spoken-voice-based-natural-language-processing-nlp-business-use

Direct download: AI_in_Industry-Michael_Johnson-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 12:00pm PDT

In order to shed more light on the growing applications of natural language processing, we speak with Vlad Sejnoha (CTO of Nuance Communications) about the current and near-term applications of NLP for voice and text across industries.

In this podcast interview, Vlad breaks down real-world NLP use-cases in industries like banking, healthcare, automotive, and customer service.

For the full article of this episode, visit:

TechEmergence.com/natural-language-processing-current-applications-and-future-possibilities

Direct download: AI_in_Industry-Vlad_Sejnoha-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 8:16am PDT

This week on AI in Industry we interview Vito Vishnepolsky of Clickworker. Clickworker is a large microtasking marketplace that crowdsources the search optimization work for many of the world's leading search engines.

So how does crowdsourced human work play a role in making sure eCommerce and media searches give users what they want? That's exactly what we explore this week. Vito’s perspective is valuable because he has a finger on the pulse of crowdsourced demand, handing business development for various crowdsourced AI support services - both for tech giants and startups.

Read the full article online at TechEmergence:

TechEmergence.com/how-microtasking-helps-optimize-ai-based-search

Direct download: AI_in_Industry-Vito_Vishnepolsky-Mixdown_1.mp3
Category:Artificial Intelligence -- posted at: 9:29pm PDT

Sales forecasting is big business. If you can better predict how much of a certain product or service you will sell in a given day, you can better stock inventory, better staff your facilities, and ultimately keep more margin in your business's accounts.

This week on AI in Industry we interview Dr. John-Paul B Clarke, professor at Georgia Tech and co-founder / Chief Scientist at Pace (previously called "Prix"). Dr. Clarke shares details about how sales predictions are done today, and what AI advancements may allow for in helping businesses sell everything from groceries to hotel rooms.

Read the full interview article online at: 

techemergence.com/ai-sales-forecasting-works-matters

Direct download: AI_in_Industry-JP_Clarke-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 6:27pm PDT

In this episode of AI in industry, Innoplexus CEO Gunjan Bhardwaj explores how pharma giants are working to overcome two critical challenges with AI: Data, and talent.

Pharmaceutical data is challenging because the same term (say "EGFR") might be referred to as a "protein", a "biomarker", or a "target". Gunjan explores how this kind of relevance and context for data - and how pharma companies may need to hire the talent issues involved with making life sciences and computer sciences teams work together productively.

See the full interview article online at:

techemergence.com/overcoming-data-talent-challenges-ai-life-sciences

 

Direct download: AI_in_Industry-Gunjan_Bhardwaj-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 8:31pm PDT

This week’s episode covers the medical applications of machine vision for the diagnosis and treatment of cancer. Medical science has integrated AI since the late 90s, and it’s been useful in the fight against cancer. This week’s guest is Dr. Alexandre Le Bouthillier, founder of Imagia. Imagia is a medical imaging company which specializes in using AI and machine learning to detect cancer in its early stages so that oncologists can make quicker, more accurate diagnoses for patients.

AI is a useful  tool in the detection of breast cancer, colon cancer, and lung cancer. It can even detect genetic mutations, something humans certainly cannot. Learn just how important AI has been over the last two decades in developing the medical infrastructure necessary for patients to have a chance at surviving and even curing their cancer.

See the full interview article - with images and audio included - on TechEmergence:

TechEmergence.com/the-future-of-medical-machine-vision-possibilities-for-diagnostics-and-more

Direct download: AI_in_Industry-Alexandre_Le_Bouthillier-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 5:13pm PDT

This week on AI in Industry, we speak with Equifax's Dr. Rajkumar Bondugula about how the dynamics, composition and requirements of the data science team have evolved over the years. Raj also shares valuable insights on how to build a robust data science and machine learning team, use its collective intelligence to solve problems, and retain the team by engaging them with the right problems they expect to solve.

For more insights from AI executives, visit:

TechEmergence.com

Direct download: AI_in_Industry-Rajkumar_Bondugula-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 2:43pm PDT

This week on AI in Industry, we explore IoT security with Bob Baxley (Chief Engineer at Bastille). This includes information on how different IoT security is compared to infosec, the unique challenges IoT security presents (for detecting and scanning wireless network traffic that runs on various protocols and for classifying types of cyberthreats), what the future of IoT security might look like, and how deep learning and machine learning tools can be used to better classify and detect threats and attacks in the cyberspace.

For more insight on the applications of AI in industry, visit:

TechEmergence.com

Direct download: AI_in_Industry-Bob_Baxley-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 5:06pm PDT

In this episode of AI in Industry, we explore how artificial intelligence can be use to manipulate human behavior - in gaming and in business. We explore how game designers use psychology and machine learning to drive their own desired outcomes, leaving users to "feel" in control.

Dr. Charles Isbell teaches machine learning at Georgia Tech. He explores the manipulative elements of game design, and how some of the same AI approaches are likely being used at tech giants like Amazon and Facebook. In this episode you learn how businesses leverage the "illusion of choice" with subtly influential AI techniques. Charles also helps us understand which businesses will be most able to use AI to guide user behavior in the years ahead.

For more interviews about the applications of AI in industry, visit:

www.TechEmergence.com

Direct download: AI_in_Industry-Dr._Charles_Isbell-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 2:24pm PDT

If you combine the hype-factor of both "blockchain" and "artificial intelligence" you often get a supernova of jargon. This week on the AI in Industry podcast, we aim to get beyond the hype to discuss how blockchain might make AI more accessible for small and mid-sized businesses in the years ahead. Dr. Ben Goertzel - CEO of SingularityNET - is our guest this week.

For more expert interviews about the business applications of AI, visit:

TechEmergence.com

Direct download: AI_in_Industry-Ben_Goertzel-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 3:26pm PDT

Expert systems and machine learning are two ends of a spectrum working to solve similar problems quite differently. One one hand you have if-then scenarios and a logical approach, and on the other you have vast neural networks and a big data approach. Some companies exist to try and bridge the gap between the if-then rule systems and the massive piles of data. They hope to find a middle ground of sorts, one that mitigates their individual disadvantages. One such company is Montreal’s fuzzy.ai.

In this episode, we interview its founder, Evan Prodromou about the state of the middle ground, so-called hybrid systems. The middle ground is an elusive, still mostly theoretical concept, but businesses can take steps to prepare for when it becomes accessible to them. What exactly would a hybrid system provide to businesses in terms of automation? How accessible are they now, and what can businesses do to best integrate them when they’re ready? Find out in this episode of the podcast.

For more interviews about the business applications of AI, visit:

www.TechEmergence.com

Direct download: AI_in_Industry-Evan_Prodromou-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 12:01pm PDT

There’s a lot of hype out there about conversational AI. Although according to our guest, we’re nowhere near the day when AI can generate accurate conversations for the average business to integrate into their customer service, chatbots still have practical applications. In this episode, we interview the head of research at Digital Genius, Yoram Bachrach. Yoram succinctly outlines the current applications of chatbots—what they can and can’t do—and details how business can best prepare to automate their customer service.

For more interviews about the applications of AI in industry, visit us online:

www.TechEmergence.com

Direct download: AI_in_Industry-Yoram_Bachrach-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 7:49pm PDT

How can machine learning help us advertise through social media? In this episode, Thomas Jelonek, CEO of Envision.ai, talks to us about how in the next five years, machine learning might automate the laborious guess-and-check process of finding visual content with which users can engage. Right now, finding images and videos that will best generate engagement is a task reserved for a human. He or she shifts through images and video clips that may work for an audience based on anecdotal evidence and perception of past post success. Learn how, according to Thomas, machine learning could help you save time and money, generate you a better ROI, and build you a larger list with more accurate targeting on social media.

For more interviews with AI experts, visit:

www.TechEmergence.com

Direct download: AI_in_Industry-Thomas_Jelonek-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 12:58am PDT

This episode explores the ways in which artificial intelligence has the potential to revolutionize the field of medicine. This week's guest, Dr. Kristóf Zsolt Szalay speaks to this topic, discussing research that hopes to create automated learning networks and algorithms designed to predict the development of human cells in response to drugs. This technological innovation would make it possible for near-instantaneous simulations to be run, allowing optimal combinations and optimal doses of drugs to be pinpointed and distributed to patients.

For more interviews on the applications and implications of AI in business, visit:

www.TechEmergence.com

Direct download: AI_in_Industry-Kristof_Zsolt_Szalay-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 6:17pm PDT

In this episode, discover how chatbots and conversational agents can provide you an advantage in the realms of customer support, product, support, lead engagement, and more, and learn the theory behind creating useful chatbots you can use in your own business. Right now, if we intend to find a piece of information or purchase something on the Internet, we might use a search engine that provides us with a list of sites we can browse in order to find ourselves a resolution for that intent. This week’s guest, Chief Scientist at Conversica, Dr. Sid J Reddy, talks about how AI and ML can usher in the next a new era of search software, one that will bring you a faster, more accurate resolution to your intent.

Most importantly, Dr. Reddy discusses how chatbot technology can be integrated into areas such as customer service, product support, and lead engagement. By the end of the episode, listeners will have a better idea of the importance of collecting data and how they can use that data to  to build chatbot templates they can use in multiple domains and applications.

For more interviews on the business applications of AI, visit:

www.TechEmergence.com

Direct download: AI_in_Industry-Sid_J_Reddy-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 2:13pm PDT

In this episode, we speak with Alan O'Herlihy, Founder and CEO of Ireland-based Everseen. Alan speaks to us about how machine vision systems can be used to detect theft or mistakes at a checkout counter (including forgetting to scan items, customers intentionally hiding items, and more). Alan not only explains where these technologies are in use today, but he also breaks down some of his own predictions about what these computer vision systems might make possible in the workplace of tomorrow.

For more interviews and use-cases of AI in industry, visit:

TechEmergence.com

Direct download: AI_in_Industry-Alan_OHerlihy-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 10:00pm PDT

Procurement isn't usually seen as a "sexy" aspect of a business's operations. Procurement personnel are responsible for sourcing suppliers or vendors, determining criterion of success, negotiating deal terms, and tracking results and deliverables - all of which could be considered "under appreciated" work. This week, Tamr's Eliot Knudsen walks us through the ways that AI is making it's way into the procurement process, and what it means for the future of this job function.

For more executive interviews about the applications and implications of AI, visit:

www.TechEmergence.com

Direct download: AI_in_Industry-Eliot_Knudsen-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 4:23pm PDT

This week we speak with Bastiaan Janmaat (CEO and co-Founder of DataFox) about the current and future applications of artificial intelligence in the CRM.

No matter what business you're in, there's a high likelihood that managing relationships with customers, wholesalers, suppliers, or affiliates is important to your daily operations. Artificial intelligence is currently being employed to help with automating data entry, automating email and phone reminders, and even prompting salespeople with the right phone scripts in real time.

In addition to covering "what's being done now" - spend the end of the interview asking Bastiaan about his predictions of the most likely AI-for-CRM capabilities that will become commonplace in the next 5 years.

For more AI executive interviews, and insights into current and future AI trends that are shaking up industries, visit:

www.TechEmergence.com

 

Direct download: AI_in_Industry-Bastiaan_Janmaat-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 1:54pm PDT

Though we don't think about it on a daily basis - the technologies around us often "work" because of an underlying standard that they depend on. These technologies include: Wifi, ethernet, fax, and much of the internet itself. Do certain AI applications need their own set of standards in order to scale?

Imagine if you needed a new type of cable or input every time you wanted to jack your computer into the wall? Imagine if you needed different hardware to pick up wifi in every location you moved around to? Imagine if all websites had totally different protocols for how they were loaded or served to your computer? If this were the case, it would be extremely challenging for a robust "ecosystem" of internet companies and technologies to emerge, because the technology wouldn't scale or work well at all.

This week we interview Konstantinos Karachalios,‎ Managing Director of the Standards Association at the Institute of Electrical and Electronics Engineers (IEEE). Konstantinos holds a PhD in Physical and previously worked for 25 years at the European Patent Office. He speaks with us this week about the kinds of AI standards that may need to arise in order for AI to be safe and trusted enough to support a business ecosystem.

Konstantinos also speaks to us about some of the current AI standards that IEEE is working on developing currently, and the implications they might have businesses everywhere.

Direct download: AI_in_Industry-Konstantinos_Karachalios-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 2:19pm PDT

It would be great if instead of having our car break down - could have them fixed as soon as the underlying problem began. It would be great if instead of having to diagnose a malfunctioning piece of mechanical equipment - would could have the right "fix" presented to us immediately. As it turns out, artificial intelligence may be working its way to accomplish both of those goals in the not-so-distance future.

This week we interview Tilak Katsuri, CEO of Predii, a predictive maintenance AI company based on Palo Alto. Predii focuses on helping service people by using AI and sensor data to prescribe proper repairs. In this episode, Tilak speaks with us about what's currently possible within the world of "predictive maintenance," as well as the possible ramifications of industrial IoT and AI in the next 5 years.

For more interviews about the real-world applications of artificial intelligence in business, visit:

www.TechEmergence.com

Direct download: AI_in_Industry-Tilak_Kasturi-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 7:13pm PDT

A huge percentage of digital advertising dollars today go to Google and Facebook, who dominate that sector - and are inevitably central for the future of programmatic advertising. There’s a lot of evidence to suggest that the growth in digital advertising in the last two to three years has gone almost entirely into their coffers. At least for the foreseeable future, Facebook and Google will retain the ability to dominate that space.

The ability to be able to bid for the attention of particular target audiences, whether they’re searching for a specific term, live in a specific place or they like a specific sports team, is something that doesn’t seem to be going away, and seems to be rather efficient, thanks in the large part to Artificial Intelligence.

In this episode we talk to Lior Tasman who is the CEO of PredictiveBid, an Israeli-based predictive advertising optimization start-up. The team focuses on applying AI to some of the bigger issues in programmatic advertising to help draw out more ROI from ads. We discuss some of the challenges of programmatic advertising and what the future of programmatic advertising may look like from an advertiser’s perspective.

For more executive interviews on the applications of AI in Industry, visit:

TechEmergence.com

Direct download: AI_in_Industry-Lior_Tasman-Mixdown_1.mp3
Category:Artificial Intelligence -- posted at: 10:33pm PDT

Machine learning currently faces a number of obstacles which prevent it from advancing as quickly as it might. How might these obstacles be overcome and what impact would this have on the machine learning across different industries in the coming decade? In this episode we talk to Dr. Hanie Sedghi, Research Scientist at the Allen Institute for Artificial Intelligence, about the developments in core machine learning technology that need to be made, and that researchers and scientists are working, on to further the application of machine learning in autonomous vehicles. We also touch on some of the impact that might be made if machine learning is able to overcome its own boundaries in terms of computational research, in terms of certain algorithms, and what kind of impact that might have in the arena of autonomous driving and in the realm of natural language processing (NLP).

See more episodes online at:

www.TechEmergence.com

Direct download: AI_in_Industry-Hanie-Sedghi-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 8:59pm PDT

Fraud attacks have become much more sophisticated. Account takeovers are happening more often. Many security attacks involve multiple methods and unexpected attacks can devastate businesses in just a few days, as we saw with Neiman Marcus and Target. False promotion and abuse is seen not only on social media sites but is also targeted at business. To combat these risks, fraud solutions need to be smarter to keep pace with fraudsters to prevent attacks and react quickly when they do happen. This requires a fast-learning solution with the ability to continually evolve. In this episode we talk to Kevin Lee from Sift Science and examine the shifts in the info security landscape over the past ten or fifteen year. Lee also highlights what new kinds of fraud are now possible and what machine learning solutions are available.

See more episodes at:

www.TechEmergence.com

 

Direct download: AI_in_Industry-Kevin_Lee-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 9:23pm PDT

Unlike the field of self-driving cars, the fields of construction, mining, agriculture, and other classes of “heavy industry” involve a huge variety of equipment and use-cases that go beyond traveling from A to B. The heavy industry leaders of today are no farther behind automakers in their understanding that AI and automation will be essential for the future of their companies. In this episode, guest Dr. Sam Kherat discusses the areas in heavy industry where AI is currently playing a role in heavy industry, what type of capabilities and functions are automatable, and at what level. He also shines a light on how AI might affect the future of the industry within the next 2-3 years, and in what ways we can expect large equipment to become more autonomous.

Direct download: AI_in_Industry-Sam_Khera-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 2:24am PDT

Although machine learning in finance is far from new, it is merely at the cusp of a much wider set of applications (in all segments of finance, from insurance to bookkeeping and beyond). Already machine learning has overhauled so many aspects of the financial landscape, from accounting to trading, and it is destined to have more and more impact as it develops further. Guest Alexander Fleiss and his team at Rebellion Research are developing and using AI which uses quantitative analysis to pick investments. Fleiss discusses the current status of machine learning in the world of finance as well as lesser-known niche applications that don’t make headlines - but do make a big impact on how businesses are run. He then goes on to explore the effects of future innovative applications of AI in the financial domain.

Direct download: AI_in_Industry-Alexander-Fleiss-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 5:34pm PDT

Guests Will Jack and Nikhil Buduma co-founders of Remedy Health Inc discuss the challenges involved in collecting, setting up and structuring data in order to implement AI in healthcare. By the end of this episode, listeners will have gained insight into the challenges of healthcare data systems, and the potential solutions to cleaning and organizing this data for healthcare AI applications.

Direct download: AI_in_Industry-Will_Jack__Nikhil_Buduma-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 6:46pm PDT

In the last few months, we've had a string of fantastic interviews with investors and have gained a cross-industry picture of what's important for start-ups and emerging trends in the AI and ML space. This week's interview is no exception. Ann Miura-Ko, co-founder and partner at Floodgate, starts with an explanation of the "self-driving enterprise" concept, her functioning idea about AI investing and the future of software in general. Her high-level insights embody an interesting emphasis on the dynamic of human-machine interactions and relationships cross industries, including the constant workflows and interactions of people using software and bolstering the predictive and prescriptive analytics capabilities of that software. While forward-thinking, Miura-Ko also paints a picture of how these synergistic relationships between humans and machines are happening with companies today.

Direct download: AI_in_Industry-Ann_Miura-Ko-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 7:20pm PDT

Getting an investor's perspective in AI is always a good idea for companies looking to raise money, in terms of understanding of excites VC's, but even more broadly an investor's perspective can point to emerging  factors in how AI is going to impact a particular industry, shining a light on industry developments, including the commonalities that matter for any company, in any industry, leveraging these tools that are increasingly embedded with AI. In this episode we interview Polaris Partners' Gary Swart, who speaks about elements of companies that are laying the right foundations for using AI optimally and making a more defensible, durable company in an increasingly competitive landscape.

Direct download: AI_in_Industry-Gary_Sart-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 9:26pm PDT

The upsurge of malware and sophisticated attacks continue to keep cybersecurity in the spotlight, but new developments in AI and deep learning offer more advanced solutions to combat security threats. This week, we catch up with Eli David, CTO of Deep Instinct—a company founded in Israel with US headquarters in San Francisco—that applies deep learning to information security. David spoke with us about why and how the deep-learning approach to AI is relevant to the future of cybersecurity.

Companies that are actively building their own security infrastructure, or are in growth mode and know they will eventually need to, should find this interview particularly relevant. David shares his perspective on how and where potential cyberthreats focus their attacks and the resulting ramifications for industries as they look for best ways to respond and prevent attacks.

 

Direct download: TEP-Eli_David-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 5:00pm PDT

One of the most clear insights from our recent consensus in marketing and advertising was that companies who have more digital touch points along the path to conversion—and more conversion in general—have an advantage when applying AI and ML technologies. In this week's episode, Scopely Co-Founder Ankur Bulsara shines a light on this dynamic and describes how gaming companies are taking advantage of digital trails and applying machine learning technologies. We don't cover much gaming on the TechEmergence podcast, so this interview is a bit off the beaten path. Bulsara speaks about how dialed-in and instrumented the mobile gaming environment is and how data is used to leverage higher conversions over time, as well as how Scopely's systems are set in place to ensure success of their business model. We think his insights on how gaming companies leverage higher conversions with (and without) machine learning can serve as an analogy for companies in other industries that are considering how to set in place similar, optimal digital processes over time.

Direct download: TEP-Ankur_Bulsara-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 10:10pm PDT

In this episode, we speak with Co-founder and CEO Alex Holub of  Vidora, about how AI can be put to work to improve marketing results. Holub touches on the resources needed—time, money, in-house or outside expertise, calibration, and data— in order to leverage AI in a realistic way. It's safe to say that today, some businesses are not yet set up to be leveraging AI, while others should be seriously considering taking the leap to using machine learning. Holub draws some firm lines as to what kinds of businesses are primed to take advantage of AI, and what it takes to flip the switch and make AI a useful and inspired revenue driver in the marketing domain.

Direct download: AI_in_Industry-Alex_Holub-Mixdown_1.mp3
Category:Artificial Intelligence -- posted at: 4:35pm PDT

I'm always a little shocked when I see how much venture investing goes into the healthcare space, which brings me to the subject of this week's episode: just how the healthcare industry is (and isn't) being impacted by innovations in AI technology. Guest Steve Gullans of Boston-Based Excel Venture Management talks about some of the various healthcare-related ML and AI applications that he sees being brought to light, and touches on which innovations have a better chance of getting blocked and redirected by parties of interest and those that have more promise in being accepted and rolled out sooner. By the end of this episode, listeners will have a more clear picture of practical considerations in healthcare technology adoption, reasons that are often less about quality or potential of the technology and more about clarity on ROI for investors.

Direct download: TEP-Steve_Gullans-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 5:00pm PDT

In some ways, investors in AI have to do a lot of what we do at TechEmergence, which is sort through marketing fluff and determine what's actually working and what's more of a pipe dream, as well as what's coming up in the next five years that seems inevitable and what's more likely to flop. In this episode we're joined by Li Jiang, a venture capitalist with GSV Capital whom I was connected with through Bootstrap Labs as a pre-event interview — we'll both be at Bootstrap Labs' Applied AI event in San Francisco on May 11. This week, Jiang speaks about the current areas of AI applications that he sees driving value in business, as well as what technologies he believes will make a long-term impact in terms of automation. His insights on where AI automations are generating cost savings and increased efficiency, as well as what roles might be completely replaced or significantly augmented by AI, are useful nuggets for companies who are thinking through some of their own business processes and are eager to identify low-hanging fruit.

Direct download: AI_in_Industry-Li_Jiang-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 10:43pm PDT

Getting beyond the marketing and jargon on the homepage of AI companies and figuring out what's actually happening, what results are being driven in business, is part of our job at TechEmergence. Shaking those answers out of founders is not always easy, but we didn't have to do much shaking with Yohai Sabag, chief data scientist for Optimove, a marketing AI and automation company in Israel. In this episode, he speaks about what humans are needed for in the optimization process, and what facets can be automated or distributed to a machine. Sabag gives an excellent walk-through of how marketers can use the "human-machine feedback loop" to optimize individual campaigns at scale.

 

Direct download: TEP-Yohai_Sabag-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 5:00pm PDT

In marketing, there are lots of applications in AI and machine learning (ML), from recommendation engines to predictive analytics and beyond. At the company Adgorithms, there are even more ambitious projects underway - like automating the process of marketing altogether by having a machine run and generate ads, or test and spend the marketing budget of a company. Or Shani, CEO of Adgorithms, focuses on the quantitative aspects and optimization of online advertising, using algorithms to improve advertising processes. In this interview, Shani talks about how Adgorithms' smart marketing platform "Albert" meshes with humans’ role in marketing, and also discusses how these roles might change over the next 5 to 10 years as we move towards ever more automated marketing processes.

Direct download: TEP-Or_Shani-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 5:57pm PDT

Not all knowledge work can be crunched by a program, but there are some hard-to-automate business processes that a select few entities are making an attempt to automate now. Boston-based Rage Frameworks, Inc. is one such company, and in this episode we speak with Senior Vice President (SVP) Joy Dasgupta about specific applications of automation technologies applied to white collar environments. Rage Frameworks has developed intelligent machines that have been able to take over process that, prior to the emergence of AI and automation technologies, would have required thousands of people to accomplish. These developments are a microcosm of what is to come, and the process is not without its ethical considerations (as discussed in a previous interview with Yoshua Bengio). But Dasgupta's insights provide a concrete glimpse into how these processes are being automated in the knowledge workplace today and what that might mean or look like decades from now.

Direct download: TEP-Joy_Dasgupta-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 9:54pm PDT

In many ways, AI and finance are made for each other. Machine learning and other techniques make it easier to identify patterns that might otherwise not be detected by the human eye, and finance is quantitative to begin with so that it’s hard not to find traction. Financial firms have also invested heavily in AI in the past, and more are starting to tap into the financial applications of machine learning (ML) and deep learning. This week, we’re joined by CEO and Co-founder of Kavout Alex Lu, whose company offers AI trading applications for enterprises and individuals. Lu speaks today about the kinds of patterns that traders now have access to in finance, and he gives examples of ways Kavout and other institutions are using artificial intelligence in stock trading to build better and more personalized products and services.

 

Direct download: TEP-Alex_Lu-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 5:30pm PDT

Market research and trends is important when discussing AI and business, but it's also worthwhile to contemplate the ethical and social implications further down the line. How will countries deal with potential unemployment problems? How might countries collaborate to hedge against the risks that AI poses to the future of work and other economic facets? A relatively small group is helping people do just that i.e. getting organizations and countries to think through how they could hedge against the grander risks inherent in a world powered by AI.

In this episode, we speak with Jerome Glenn, head of the Millennium Project, an initiative that focuses on research implementing the organizational means, operational priorities, and financing structures necessary to achieve the Millennium Development Goals or (MDGs). Glenn talks about how he gets principalities of the world to bring their big industrial players and the public to talk through possible scenarios that are 30, 40, even 50 years in the future, and about ways we might potentially hedge against risks and make the most of the upsides of AI in a global economy.

Direct download: TEP-Jerome_Glenn-Mixdown_1.mp3
Category:Artificial Intelligence -- posted at: 12:09pm PDT

I remember reading an article in Scientific American years ago about a poster of a person looking in the direction people sitting in a school dining room, and that this poster would make people sitting in the dining room less likely to litter. This seems like an absurd example of holding people accountable for their actions, but as it turns out, there are a lot more serious consequences to ensuring behavior change through observation, and one area where this matters is medicine.

Today, there’s a major issue with people who don't adhere to their medical regimens, only to relapse or experience more serious symptoms later on. This week's guest, Cory Kidd, CEO of Catalia Health and known for his work at MIT on human-robotic interaction, is working to help solve this problem by developing a robot that adds some of that physical presence and accountability. This is likely one of many novel medical AI applications that we're likely to see roll out in healthcare over the next decade.

Direct download: TEP-_Cory_Kidd-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 5:00pm PDT

Today's episode is about continual learning, a focus of Cogitai, a company dedicated to building AI's that interact and learn from the real world. Cogitai's Cofound and CEO Mark Ring talks about the differences between supervised and reinforcement, and how Cogitai intends to take reinforcement learning in the direction of continual learning. Ring also touches on where he sees an opportunity for applying continual learning in domains like vehicles, consumer apps, etc., and improving abstract levels of understanding by machines.

 

Direct download: TEP-_Mark_Ring-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 8:59pm PDT

OpenAI's Ilya Sutskever on Preparing for the Future of Intelligence

Some organizations are leveraging artificial intelligence (AI) to help the world with research, some to help companies with marketing, and some are intent on ensuring that the future of AI doesn’t result in the end of humanity. Theres’a good likelihood that if you're reading this interview, that you're already familiar with OpenAI, an organization with the sole purpose of ensuring that the future of man and machines is a friendly one, and that the concentration of power and intelligence isn’t centralized in a way that would make AI a dangerous tool. In this episode, we speak with Ilya Sutskever, research director for Open AI. This was a fun but frustrating interview; Sutskever held his cards close to his chest, but we gain some perspective on what he considers to be areas of importance regarding the future of AI and considerations for safely furthering advances in the field.

Direct download: TEP-Ilya_Sutskever-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 5:23pm PDT

Accenture's CTO on: The Economic Impact of Artificial Intelligence

Accenture is a pretty large company in the tech space, providing services to many of the Fortune 500 and global equivalents. They recently conducted a study of their own, combined with expertise from economists and AI researchers, about the longer-term economic impact of artificial intelligence on economies around the world. In this episode, I speak with Chief Technology Officer Paul Daughtery, who has been with Accenture since 1986, who was joined by Global Technology R&D Lead Marc Carrel-Billiard. We met up at a coffee shop after an AI Summit in San Francisco, and I asked Paul and Marc about what they had learned from this newly-published study and what they consider to be the significant impacts of AI and automation on the future job market.

Direct download: TEP-Paul_Daughtery-Mixdown.mp3
Category:Artificial Intelligence -- posted at: 9:29pm PDT

Could Swarm Intelligence Be Used to Teach AI?

It isn’t by chance that birds fly in flocks and fish swim in schools -  they’re actually smarter when they act in a group. Could it be possible to extend that collective intelligence to human beings, and even AI? Louis Rosenberg is a PhD from Stanford, previously founder of Immersion and who now runs Unanimous AI, a company focusing on harnessing swarm intelligence with human beings. In this episode, Rosenberg speaks about how this collective-intelligence approach has been applied to human beings in terms of garnering improvements in a range of predictions, and he also touches on what this type of swarm intelligence might mean when we talk about multiple AI’s in the future.

Direct download: Louis_Rosenberg.mp3
Category:Artificial Intelligence -- posted at: 5:00pm PDT

The Business Value of Unstructured Data - with LoopAI Chief Scientist Patrick Ehlen

Our guest in this episode has spent a large part of his life on figuring out how to make machines more intelligent. LoopAI Chief Scientist Patrick Ehlen has worked on a number of important projects, from DARPA projects to big-company AI solutions at places like AT&T. LoopAI works on getting AI to make sense and meaning of unstructured text, and Ehlen talks about the potential business applications for this technology and where it's making way its way into industry. Ehlen also touches on the implications for developers in the nascent AI field - like LoopAI - that are vying to implement its technology as an industry standard, and how such organizations will have to market themselves and deliver services to develop a thriving AI ecosystem.

Direct download: Patrick_Ehlen_Finished.mp3
Category:Artificial Intelligence -- posted at: 4:00pm PDT

Investing in Artificial Intelligence - With Motus Ventures' Robert Seidl

Companies looking to raise money are often asking what investors think of their company, their industry, and how they're making investment decisions in related companies. In this episode, I ask these questions of Robert Seidel, who is managing partner of Motus Ventures, an investment firm focusing on autonomous Vehicles and the IoT. Seidl talks about various data sources and the people and networks from which investors draw information when they don’t have what they need on-hand and need to make important investment decisions. He also shares his perspective on the high-energy and competitive investment world of AI, including his thoughts on the most exciting (and confusing) areas in the industry.

Direct download: Robert_Seidl_Mixed.mp3
Category:Artificial Intelligence -- posted at: 4:23pm PDT

Your.MD's CEO on the Future of AI in Medicine

In this episode, we speak with Dr. Matteo Berlucchi, the founder of Your.MD, which uses artificial intelligence to create one of the first personal health assistant platforms in 70+ countries. Berlucchi talks about the challenges in making an AI do what you want, specifically helping people self diagnose and seek proper treatment. He discusses the multiple approaches to AI that are blended together in order to yield optimal results, and touches on the sometimes stark differences between what AI can do in the lab versus the functional application for tens of thousands of people. If you're interested in the diverse applications of AI and the challenges in running a startup, Dr. Berlucci's makes for an interesting episode.

Direct download: Matteo_B.mp3
Category:Artificial Intelligence -- posted at: 5:29pm PDT

Technology Meta-trends and a Bird's Eye View of the Singularity

Today we have a guest who has interviewed more futurists than anyone else I know. While at TechEmergence a lot of our interviews focus on executives in AI, Nikola Danaylov has had the pleasure of interviewing some of the finest futurists and forward-thinking minds in the world, including Ray Kurzweil, Verner Vinge, Marvin Minsky, and many others. We speak today about the trends he’s seen aggregated (if any) amongst futurists, and about how technology may be dragging us farther into a transhuman future, whether that be closer to a utopia or a dystopia.

Direct download: Nikola_Dana_Mixed.mp3
Category:Artificial Intelligence -- posted at: 7:58pm PDT

Machine Learning Not a Crystal Ball, But It Brings Clarity to Investment Decisions

Tad Slaff is the founder of Inovance, the creator of TRAIDE - a strategy creation platform that use machine learning algorithms to help traders uncover patterns in assets and indicators and build more reliable trading strategies. In this episode, Tad speaks about the state of machine learning in finance today, and touches on how future applications of machine learning and trends may alter what gives an edge to one hedge fund or institutional investor over another.

Direct download: Tad_Slaff.mp3
Category:Artificial Intelligence -- posted at: 12:00am PDT

How Gaming Could Win Us More Adaptable Artificial Intelligence

It’s more common to ask what AI can to do to win at games, but it’s less common to ask what games can do to help develop AI. This is a particularly fitting topic after Google’s DeepMind’s defeat of Go, and in this episode we talk with New York University’s Julian Togelius about his research in how games can help us develop AI. We discuss how simple AI has been used in more common video games; the ‘smoke and mirrors’ effect that is more often used to mimic AI; and the more innovative ways that AI are being used in gaming at present, setting precedents for the future role of AI in gaming.

Direct download: Julian_Togelius_new.mp3
Category:Artificial Intelligence -- posted at: 4:03pm PDT

Is Embodied Intelligence a Necessity for Flexible, Adaptive Thinking?

What is intelligence? For some researchers, it may be quite possible to create an intelligent machine ‘in a box’, something without physical embodiment but with a powerful mind. Others believe general intelligence requires interaction with the outside world, inferring information from gestures and other features of functioning in an environment. Dr. Vincent Müller is of the belief that intelligence may involve more than just mental algorithms and may need to include the capacity to sense rather than just run a program. Vincent focuses on cognitive systems as an approach to AI, and in this episode he talks about what this means and implies, how this approach is different from classical AI, and what this might permit in the future if the field is developed.

Direct download: Vincent_Mueller.mp3
Category:Artificial Intelligence -- posted at: 11:42am PDT

The Rise of Neural Networks and Deep Learning in Our Everyday Lives

How do neural networks affect your life? There’s the one that you walk around with in your head of course, but the one in your pocket is an almost constant presence as well. In this episode, we speak with Dr. Yoshua Bengii about how the neural nets in computer software have become more ubiquitous and powerful, with deep learning algorithms and neural nets permeating research and commercial applications over the past decade. He also discusses likely future opportunities for deep learning in areas like natural language processing and individualized medicine. Bengio was a researcher at Bell Labs with Yann LeCun and Geoffrey Hinton, now at Facebook and Google respectively, and was working on neural nets before they were the "cool" new AI technology that they're seen as today.

Direct download: Yoshua_Bengio.mp3
Category:Artificial Intelligence -- posted at: 3:00am PDT

Fear Not, AI May Be Our New Best Creative Collaborators

Statements about AI and risk, like those given by Elon Musk and Bill Gates, aren’t new, but they still resound with serious potential threats to the entirety of the human race. Some AI researchers have since come forward to challenge the substantive reality of these claims. In this episode, I interview a self-proclaimed “old timer” in the field of AI who tells us we might be too preemptive about our concerns of AI that will threaten our existence; instead, he suggests that our attention might be better  honed in thinking about how humans and AI can work together in the present and near future.

Direct download: Jim_Hendler.mp3
Category:Artificial Intelligence -- posted at: 6:00am PDT

Open-Minded Conversation May Be Our Best Bet for Survival in the 21st Century

Few astrophysicists are as decorated as Martin Rees, Baron Rees of Ludlow, who was a primary contributor to the big-bang theory and named to the honorary position of UK's astronomer royal in 1995. His work has explored the intersections of science and philosophy,  as well as human beings’ contextual place in the universe. In his book "Our Final Century", published in 2003, Rees warned about the dangers of uncontrolled scientific advance, and argued that human beings have a 50 percent chance of surviving past the year 2100 as a direct result. In this episode, I asked him why he considers AI to be among one of the foremost existential risks that society should consider, as well as his thoughts around how we might best regulate AI and other emerging technologies in the nearer term.

Direct download: Martin_Rees.mp3
Category:Artificial Intelligence -- posted at: 9:12pm PDT

Putting the Art in Artificial Intelligence with Creative Computation

When we think about AI, we often think about optimizing some particular task. In most circumstances through computation there is an optimal chess move, or an optimal way to determine pattern in data, or solve a math problem, or route info through servers. Most of us are aware of these uses, but what about creative tasks? Can these also be optimized? If we want to give a computer information and tell it to create powerpoint slides, is there an optimal way to create such slides? Dr. Philippe Pasquier’s computational research is focused on artificial creativity. In this episode, we talk about how to define a very new field, train machines in this area, and also discuss trends and developments that might permit such technology to thrive in the next 10 years.

Direct download: Philippe_Pasquier_1.mp3
Category:Artificial Intelligence -- posted at: 4:00am PDT

AT&T Predicts Future, Save Service with Machine Learning

We’ve featured a number of artificial intelligence researchers on the show, but today we switch gears and dive into the business side of the industry. In this episode, Dr. Mazin Gilbert (who earned his PhD in Engineering) breaks down AT&T’s efforts to make more intelligent systems large-scale. How do they train their network to route traffic through the right nodes on holidays, when certain areas of traffic are overloaded? How can a system know, based on signals from hardware, which pieces might be going bad and need replacing and send out a message to alert the company? Making a network ‘aware’ is a large challenge, but Mazin gives an insider’s perspective as to how economic and business pressures are driving AT&T to implement machine learning technologies in order to remain profitable.

 

Direct download: Mazin_Gilbert.mp3
Category:Artificial Intelligence -- posted at: 6:00am PDT

Snuggle up with Technology, But Don't Leave Empathy in the Cold

Are we losing something with technology? There are two sides to every argument, including this one. Dr. Sherry Turkle is of the belief that there’s enough mounting scientific evidence that points toward loss of empathy and self knowledge due to increasing interaction with machines. In this episode, we discuss Dr. Turkle’s research and her subtle fears for the future, particularly of those about machines that replicate emotions or conversation but that don’t actually feel anything - is the ability to form real connections between two beings at risk of being lost?

Direct download: Sherry_Turkle.mp3
Category:Artificial Intelligence -- posted at: 6:00am PDT

Putting the Horse Before the Cart May Lead the Way to Artificial General Intelligence

A lot of AI applications are not really “smart”, at least not in the sense of the word as most humans might envision a true artificial intelligence. If you know how Deep Blue beat Gary Kasparov, for example, then you may not believe that Watson is a legitimate thinking machine. Our guest this week, Dr. Pei Wang, is of the belief that building a Artificial “General” Intelligence (AGI), what researchers define as an entity with human-like cognition, is a separate question from figuring out AI applications in the more narrow sense. In this episode, Dr. Wang lays out three differentiating factors that separate AGI from AI in general, and also talks about three varied and active approaches being taken to try and accomplish AGI.

Direct download: PeiWang.mp3
Category:Artificial Intelligence -- posted at: 6:00am PDT

Seeing the World through Machine Eyes - with Dr. Irfan Essa

Most of us forget that just about a decade ago, Facebook’s software was incapable of tagging people in a photo, but today can so without difficulty, sometimes without us even knowing. Machine vision has progressed to the point where it’s also common for computers to be able to pick out dogs from cats in images, another task that was not possible 10 years ago.

In this episode, we talk with Dr. Irfan Essa, an expert in Computer Vision at the Georgia Institute of Technology (GA Tech), about progress made in machine vision over the last 10 years, related projects in the works today, and where machine vision may be headed in the next decade.

Direct download: Irfan_Essa.mp3
Category:Artificial Intelligence -- posted at: 6:00am PDT

1